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Abstract. Land surface models (LSMs) contain a suite of different parameters and state variables to resolve the 

water and energy balance at the soil-atmosphere interface. Many of the parameters of these models cannot be 

measured directly in the field, and require calibration against flux and soil moisture data. In this paper, we use 

the Variable Infiltration Capacity Hydrologic Model (VIC) and the Community Land Model (CLM) to simulate 

temporal variations in soil moisture content at 5, 20 and 50 cm depth in the Rollesbroich experimental watershed 15 

in Germany. Four different data assimilation (DA) methods are used to jointly estimate the spatially distributed 

water content values, and hydraulic and/or thermal properties of the resolved soil domain. This includes the 

Ensemble Kalman Filter (EnKF) using state augmentation or dual estimation, the Residual Resampling Particle 

Filter (RRPF) and Markov chain Monte Carlo Particle Filter (MCMCPF). These four DA methods are tuned and 

calibrated for a five month data period, and subsequently evaluated for another five month period. Our results 20 

show that all the different DA methods improve the fit of the VIC and CLM model to the observed water content 

data, particularly if the maximum baseflow velocity (VIC), soil hydraulic (VIC) properties and/or soil texture 

(CLM) are jointly estimated along with the model states. In the evaluation period, the augmentation and dual 

estimation method performed slightly better than RRPF and MCMCPF. The differences in simulated soil 

moisture values between the CLM and VIC model were larger than variations among the data assimilation 25 

algorithms. The best performance for the Rollesbroich site was observed for the CLM model. The strong 

underestimation of the soil moisture values of the third VIC-layer are likely explained by an inadequate 

parameterization of groundwater drainage.  

1   Introduction 

Land surface models use a suite of different parameters to characterize adequately a myriad of different fluxes 30 

and state variables that determine the water and energy status of the land surface. Generally, water balance 

involves water processes from soil (evaporation, infiltration, surface runoff, etc.), canopy (interception, 

evapotranspiration, etc.), aquifer (discharge and recharge of groundwater) and atmosphere (precipitation) 

(Schaake, et al., 1996); energy balance includes latent and sensible heat fluxes from soil, snow, surface water 

and vegetated surface (Bertoldi, 2004). All these processes are characterized by parameters which are based on 35 

global or regional distributions of vegetation and soil properties (Milly and Shmakin, 2002). These parameters 

differ from one model to the next, however all land surface models need soil hydraulic parameters (e.g. saturated 
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hydraulic conductivity) to describe water process in soil, vegetation parameters (e.g. root profile) to calculate 

evaporation, soil thermal parameters (e.g. saturated thermal conductivity) to solve soil temperature, and surface 

albedo to estimate reflected shortwave radiation. Different models control these parameters in different ways. 

Some models estimate soil hydraulic and thermal parameters from soil texture on the basis of pedotransfer 

functions. An example is the Community Land Model (CLM) (Vereecken et al., 2008; Oleson et al., 2013; Han 5 

et al., 2014). Other models require as input values for the hydraulic and thermal parameters. An example is the 

Variable Infiltration Capacity Model (VIC) (Liang et al., 1994; Gao et al., 2010).  

At many locations, the information of soil properties (soil texture, saturated hydraulic conductivity or porosity) 

is not available or not accurate. Another important source of uncertainty for calculations with LSMs are the 

meteorological input data, even if data from locally available measurements are used. Predictions with LSMs are 10 

strongly affected by the large uncertainty of model parameters and forcings (Kitanidis and Bras, 1980). Data 

assimilation provides a way to take advantage of all available ground-based, airborne or spaceborne observations 

to improve the compliance between numerical models and corresponding data. This approach allows for joint 

estimation of the states and parameters while taking into explicit consideration model structural error and forcing 

data errors (Liu and Gupta, 2007). Several published studies have shown the merits of parameter estimation in 15 

the context of data assimilation involving soil moisture characterization (e.g., Montzka et al., 2011), rainfall-

runoff modeling (e.g., Moradkhani et al., 2005a; Vrugt et al., 2005) and land surface modeling (e.g., Pauwels et 

al., 2009).  

All data assimilation methods merge observations and models yet the degree of sophistication varies widely. 

Much previous work has appeared on the topic of joint parameter-state estimation in the hydrologic/land-surface 20 

literature. The majority of these contributions involves assimilation of synthetic observations including (among 

others) groundwater table depth or piezometric head (Franssen and Kinzelbach, 2008; Bailey and Bau, 2012; 

Kurtz et al., 2014; Shi et al., 2014; Song et al., 2014; Tang et al., 2015), discharge (Rasmussen et al., 2015), 

groundwater temperature (Kurtz et al., 2014), soil moisture (Wu and Margulis, 2011; Plaza et al., 2012; Erdal et 

al., 2014; Shi et al., 2014; Song et al., 2014; Pasetto et al., 2015), streamflow (Bailey and Bau, 2012; 25 

Moradkhani et al., 2012; Vrugt et al., 2013), brightness temperature from passive remote sensing (Montzka et al., 

2011; Montzka et al., 2013; Han et al., 2014), and contaminant concentration (Gharamti et al., 2013). These 

published papers include use of the Particle Filter (PF) (Montzka et al., 2011; Plaza et al., 2012; Montzka et al., 

2013), Markov Chain Monte Carlo Particle Filter (MCMCPF) (Moradkhani et al., 2012; Vrugt et al., 2013), 

Ensemble Kalman Filter (EnKF) (Franssen and Kinzelbach, 2008; Wu et al., 2011; Gharamti et al., 2013; Erdal 30 

et al., 2014; Kurtz et al., 2014; Shi et al., 2014; Pasetto et al., 2015), iterative EnKF (Song et al., 2014), Extended 

Kalman Filter (Pauwels et al., 2009), Local Ensemble Transform Kalman Filter (LETKF) (Han et al., 2014), 

Ensemble Transform Kalman Filter (ETKF) (Rasmussen et al., 2015), and Normal Score Ensemble Kalman 

Filter (NS-EnKF) (Tang et al., 2015). General conclusion of these papers is that joint parameter and state 

estimation by data assimilation significantly enhances the ability of the model to mimic the observed data, yet 35 

the findings of these papers might not necessarily apply to real-world data involving significant errors in the 

model structure, input and calibration data.  

Some previous work also applied joint parameter-state estimation with real-world data. These works considered 

the assimilation of electrical conductivity data (Wu and Margulis, 2013), piezometric head data from wells 

(Kurtz et al., 2014; Shi et al., 2015), groundwater temperature data (Kurtz et al., 2014), streamflow 40 
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measurements (Moradkhani et al., 2012), discharge measurements (Shi et al., 2015), active remote sensing data 

(Pauwels  et al., 2009), passive brightness temperature information (Qin et al., 2009), soil moisture observations 

from lysimeter (Lue et al., 2011; Wu and Margulis, 2013; Erdal et al., 2014; Shi et al., 2015), land surface 

temperature observations (Bateni and Entekhabi, 2012) and sensible and latent heat fluxes (Shi et al., 2015). The 

methods used were PF (Qin et al., 2009), MCMCPF (Moradkhani et al., 2012), EnKF (Bateni and Entekhabi, 5 

2012; Wu and Margulis, 2013; Erdal et al., 2014; Kurtz et al., 2014; Shi et al., 2015) and Extended Kalman 

Filter (Pauwels et al., 2009; Lue et al., 2011). These papers also concluded that joint parameter and state 

estimation worked well in real-world cases. However, this overview indicates that few real-world applications 

involved the evaluation of soil moisture content in the context of joint state-parameter estimation with land 

surface models (Lue et al., 2011;  Shi et al., 2015), even although soil moisture plays a critical role in the 10 

partitioning of energy and water fluxes at the land surface. 

This paper focuses therefore on the evaluation of joint state-parameter estimation in the context of soil moisture 

characterization with land surface models. The comparison in this paper includes four sequential data 

assimilation algorithms in combination with two different land surface models. The four data assimilation 

algorithms which are compared are variants of the commonly used data assimilation algorithms Ensemble 15 

Kalman filter (EnKF) and particle filter (PF). For EnKF the state augmentation approach (Chen and Zhang, 

2006) and the dual estimation approach (Moradkhani et al., 2005a) are compared. In the state augmentation 

approach, the state vector is augmented by parameters and then states and parameters are jointly updated over 

time. In the dual estimation approach, states and parameters are stored in two separate vectors. Parameters are 

updated first and then the updated parameters are used to update states. PF updates states and parameters 20 

simultaneously, as states and parameters are jointly related to a certain particle with specific weight (Moradkhani 

et al., 2005b). The PF used in this study was the Residual Resampling Particle Filter (RRPF) (Douc et al., 2005) 

and Markov Chain Monte Carlo Particle Filter (MCMCPF) which alleviates the particle degeneration by adding 

a move step on particles after resampling to generate proposal particles (Moradkhani et al., 2012; Vrugt et al., 

2013). A Metropolis ratio is then calculated to decide whether the proposal particle is accepted or not. Relatively 25 

few papers (Dechant and Moradkhani, 2012; Dumedah and Coulibaly, 2013; Chen et al., 2015) compared 

sequential data assimilation algorithms for joint state-parameter estimation problems. Only Chen et al. (2015) 

made a comparison of the data assimilation algorithms for a LSM, the other two papers were concerned with 

rainfall-runoff modeling.  

The main objectives of this study are as follows: (1) to test and evaluate the merits of joint parameter and state 30 

estimation for LSMs using real-world data; (2) to compare the performance of the four commonly used data 

assimilation methods in their ability to characterize adequately the soil moisture profiles of the experimental site; 

(3) to compare the simulation results of the CLM and VIC model and explain the differences in performance of 

these models. 

The remainder of this paper is organized as follows. In section 2, we briefly review the VIC and CLM models 35 

used herein to simulate the soil moisture dynamics of the Rollesbroich experiment site. In this section we are 

especially concerned with parameter selection, and a description of the experimental site and data. Section 3 then 

introduces the basic concepts of the four different data assimilation algorithms used herein. This is followed in 

section 4 with a detailed explanation of the numerical setup of each data assimilation method and results of our 
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experiment. Section 5 discusses the main findings of our assimilation studies. Finally, this paper concludes in 

section 6 with a summary of our main findings.  

2  Land Surface Models 

We now discuss the two different land surface modeling schemes (models) used herein. The appendix provides 

further details on each of the models.  5 

2.1 Variable Infiltration Capacity Model (VIC) 

The VIC model is a semi-distributed macro-scale hydrological model and takes account of vegetation variations 

within a grid cell. Accordingly, each grid cell is divided into land cover tiles (Liang et al., 1994; Liang et al., 

1996; Cherkauer and Lettenmaier, 1999). On the other hand, soil properties (e.g., soil texture, hydraulic 

conductivity, thermal conductivity) are held constant within each grid cell. VIC considers both the water and 10 

energy balance for the grid cell. For each grid cell, the total evapotranspiration, sensible heat flux, effective land 

surface temperature and runoff are obtained by summing over all the land cover tiles (vegetation types and bare 

soil) weighted by the fractional coverage (Gao et al., 2010). The VIC model can either be run in a water balance 

mode or a water-and-energy balance mode. In this paper, the water-and-energy balance mode was used. 

In this study, VIC-3L was used, which is a three layer version of the VIC model. The soil column has a very thin 15 

surface layer (first layer), an upper layer (second layer) and a lower layer (third layer). The surface layer captures 

rapid dynamics related to rainfall events and bare soil evaporation. The upper layer is strongly influenced by the 

response to rainfall. The lower layer is affected by seasonal dynamics of deep soil moisture and base flow. In this 

study, the thicknesses of the 3 layers are 10cm, 20cm and 40cm respectively.  

VIC-3L requests as input meteorological data (precipitation, wind speed, air temperature, longwave/shortwave 20 

radiation, relative humidity), soil properties like soil bulk densities and soil hydraulic parameters (saturated 

hydrologic conductivity ks, residual water content of a soil layer, parameters for the soil-water characteristic 

curve, and parameters for the baseflow). Further model inputs to VIC-3L are the vegetation types and their 

characteristics, and the fractions of the different vegetation types in each grid cell. More details about the 

parameterization are presented in Appendix A. 25 

2.2 Community Land Model (CLM) 

CLM is the land model for the Community Earth System Model (CESM) (Oleson et al., 2013). It includes the 

hydrological cycle, biogeochemical cycles, biogeophysics and dynamic vegetation. Unlike the VIC-3L model, a 

grid cell in CLM has multiple subgrid levels. The first subgrid level is defined by land units (vegetated, lake, 

urban, glacier, and crop), and each land unit has a number of columns (second subgrid level). For the vegetated 30 

land unit, as well as for lakes and glaciers, there is one column; for the urban land use, there are five columns; 

for crop land, there is a distinction between irrigated and unirrigated columns with one single crop occupying 

one column. The third subgrid level is the Plant Functional Type (PFT) level, including bare soil. The vegetated 

column has 16 possible PFTs besides bare soil. For the crop column, several crop types are available. Processes 

like canopy evaporation and transpiration are calculated for each available PFT. Processes related to soil or snow 35 

are calculated for each column, which requires PFT level properties to be aggregated to the column level. The 
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aggregation is computed by a weighted sum of the desired quantities over all PFTs whose weights depend on the 

PFT area relative to the complete area. This aggregation in CLM is the same as for VIC-3L. 

Soil temperature is calculated for 15 soil layers, while hydrology is calculated for the top 10 soil layers. CLM 

input includes atmospheric forcing data, land surface data including information on PFTs, and adjustable 

parameters and physical constants. CLM uses soil properties like soil texture and organic matter density in 5 

combination with model internal pedotransfer functions to derive soil hydraulic and thermal parameters like 

saturated hydraulic conductivity. More details about the parameterization are presented in Appendix B. 

2.3 Differences between VIC-3L and CLM 

VIC-3L and CLM show a number of important differences concerning their calculations of the water and energy 

balances: 10 

(1) The two models use a different approach for solving flow in the unsaturated zone. CLM uses a modified 

Richards’ equation, which includes coupling with an unconfined aquifer. VIC-3L uses a bucket type approach 

which takes into account the variable infiltration capacity.  

(2) In VIC-3L, the unsaturated and saturated zones are treated in a lumped sense and the impact of groundwater 

is not taken into account. In CLM, the interaction between an unconfined aquifer and the unsaturated soil column 15 

is considered. Changes in water table depth are calculated and included as boundary condition for solving flow 

in the unsaturated zone. 

(3) Soil hydraulic parameters like saturated hydraulic conductivity, parameters used to calculate baseflow and 

soil thermal information like average soil temperature (and other parameters) are the direct input information in 

VIC-3L. On the contrary, hydraulic conductivity, saturated soil matric potential, the Clapp-Hornberger exponent 20 

B and soil thermal conductivity are calculated by model internal pedotransfer functions, using soil texture and 

soil organic matter density as input information in CLM. 

(4) The depths of the three soil layers are user-defined in VIC-3L, while in CLM, the thicknesses of the 15 soil 

layers are internally defined. All the calculations are based on these thicknesses. 

2.4 Selection of parameters to be updated 25 

The sensitivity of land surface parameters of VIC-3L was investigated in the past by other authors using Monte 

Carlo Analysis, Generalized Likelihood Uncertainty Assessment (GLUE), or different calibration approaches 

(Demaria et al., 2007; Xie et al., 2007; Troy et al., 2008). The results revealed that parameter sensitivity was 

dependent on climate. For CLM, only sand fraction, clay fraction, and organic matter density are direct input 

data, and soil hydraulic and thermal parameters are calculated by pedotransfer functions which are hard coded in 30 

CLM (Oleson et al., 2013; Han et al., 2014). Table 1 shows the parameters chosen to be updated during the 

assimilation period in our work for both the VIC model and CLM. The definition of these parameters can be 

seen in Appendix A and B.  

3. Assimilation Algorithms 

Data assimilation algorithms combine observations and model predictions together and update model states and 35 

parameters. Commonly used data assimilation algorithms are EnKF, PF and variants of them.  
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3.1 EnKF 

EnKF was proposed by Evensen (1994) and follows a Monte Carlo approach to generate stochastic realizations 

for estimating the forecast-error statistics.  

The stochastic EnKF scheme includes the following steps (Burgers et al., 1998): 

xt

i-
 = f (x

t-1

i , p
t-1

i , ut
i)  + vt                                                                                                        (21) 5 

where i refers to the ith ensemble member (i = 1, ..., N), f to a simulation model (in our case the VIC-3L model 

or CLM), t to the time step, xt

i-
 to the predicted state vector at time t (in our case soil moisture), p to the 

parameter vector, u to the forcing data, and vt-1 to model error at time step t. From the ensemble of state vectors 

at time t, the background error covariance matrix C is obtained according to:  

C = 
1

N - 1
∑ (xt

i-
 - xt̅̅ ̅)(xt

i-
 - xt̅̅ ̅)N

i=1                                                                                                (22) 10 

where N is the number of ensemble members, and  xt̅̅ ̅ indicates the ensemble mean at time step t. The 

observation equation is given by: 

y
t
i = y

t
 +wt

i                                                                                                                             (23) 

where y is the vector with observations and w is the observation error, which is generated from a normal 

distribution N(0, σ) and σ is the expected measurement standard deviation. The ensemble members of state 15 

vectors are updated with the help of observations according to:  

xt
i = xt

i-
 + K(y

t
i - Hxt

i-
)                                                                                                             (24) 

where xt
i is the updated state vector, and H is an observation operator that connects measurements and model 

states, it is the identity matrix if y refers to in-situ ground measurements available at all grid cells. K is Kalman 

gain and R is the observation error covariance matrix calculated by: 20 

 R = 
1

N - 1
∑ (y

t
iN

i=1  - y
t

̅̅ ̅)(y
t
i - y

t
̅̅ ̅)                                                                                               (25) 

where y
t̅
 is the average over the perturbed observations. However, R is usually defined a priori on the basis of 

expected measurement errors. Finally, the Kalman gain K is calculated by: 

K = CHT(HCHT + R)
-1

                                                                                                          (26) 

3.1a EnKF with state augmentation 25 

There are two often applied approaches for joint estimation of states and parameters in EnKF: state augmentation 

and dual estimation. In the state augmentation approach, the state and parameter vector are combined into a 

single joint state vector (Franssen and Kinzelbach, 2008), and the states and parameters are estimated 

simultaneously.  

In state augmentation, the state vector x, the model error covariance matrix C, the measurement operator H, and 30 

the Kalman gain K consist of two blocks: 

xi = [
si

pi]                                                                                                                                  (27) 

C = [
Css        Cps

T

Cps       Cpp

]                                                                                                                    (28) 

H*= [Hs,Hp]                                                                                                                           (29) 
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where s refers to model states and p to parameters. The model error covariance matrix C now includes four parts: 

Css  , Cps
T , Cps, and Cpp. The measurement operator H is also augmented to H*which includes Hs and Hp. The 

Kalman gain K is now given by: 

K= CH*T(H*CH*T+ R)
-1

= [
Ks

Kp
]                                                                                            (30) 

The updating Eq. (24) is now given by:  5 

[
st

i

pi
] = [

st

i-

pi-
] + [

Ks

Kp
] [y

t
i-Hst

i-
]                                                                                                     (31) 

3.1b EnKF with dual estimation 

In the dual estimation approach, states and parameters are stored in two vectors which are modified in two 

separate operations (Moradkhani et al., 2005a). The parameter ensemble members are updated in a first step 

according to: 10 

p
t
i = p

t
i- + Kp(y

t
i - Hst

i-
)                                                                                                           (32) 

Next, the updated parameters are used to update the ensemble of model state predictions according to Eq. (21) 

and (24). The model has to be run twice for the dual estimation approach and therefore the CPU-time 

approximately doubles compared to the state augmentation approach. 

A problem associated with EnKF is the filter inbreeding where the underestimation of ensemble variance 15 

becomes more severely after several data assimilation cycles. In extreme cases, the model ensemble variance is 

so small that the weights for the measurements are close to zero and observations are not able to correct the 

ensemble anymore. Filter inbreeding is aggravated by a low number of ensemble members which results in 

spurious correlations among state variables/parameters, and reduces the ensemble variance artificially. Another 

reason for the underestimation of ensemble spread could be a too small prior uncertainty for parameters and/or 20 

model forcings, or an important model structural error. Ensemble inflation methods are an effective way to 

ameliorate the filter inbreeding (Anderson, 2007; Whitaker and Hamill, 2012). In our work, the inflation 

algorithm proposed by Whitaker and Hamill (2012) was applied to the ensemble of parameter values and the 

ensemble of each parameter increased or decreased its variance according to: 

p
t
i = p

t
̅̅ ̅ + (p

t
i  - p

t̅
)(1 +

 σb-σa

σa
)                                                                                                (33)  25 

where  p
t

̅̅ ̅ is the ensemble mean for a parameter pt at time step t, σb is the posterior ensemble standard deviation 

of the parameter and σa is the prior ensemble standard deviation. This method artificially keeps the ensemble 

standard deviation of parameters equal to the initial standard deviation for the parameters. This method is 

especially important for applications with small ensemble sizes. 

3.2 Residual Resampling Particle Filter (RRPF) with parameter resampling 30 

The particle filter was first suggested in the research area of object recognition, robotics and target tracking 

(Arulampalam et al., 2002). It was introduced in hydrology by Moradkhani et al. (2005a). PF solves the 

Bayesian recursion equations directly by using an ensemble based approach and a set of particles to represent the 
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samples from the probability density function (PDF). Each particle has a weight assigned to it that represents the 

probability of that particle being sampled from the PDF. The state-space model can be non-linear and the initial 

state and noise distributions can take any arbitrary PDF.  

The posterior PDF at time t given the observations yt is approximated by the PF according to: 

 p(xt
i |y

t
 ) ≈ ∑ wt

iN
i=1 δ(xt-xt

i)                                                                                                      (34) 5 

where xt
i is assumed to be the ith state sample (in our case soil moisture) drawn from the posterior pdf p(xt|yt

) 

with weight wt
i and δ is the Dirac delta function. However, as it is impossible to sample from the true posterior 

PDF, a proposal distribution (q(xt
i|y

t
)) is an alternative. The weight for a particle i is calculated according to: 

 wt
i∝ 

p(xt
i|yt )

q(xt
i |yt)

                                                                                                                            (35) 

For the sequential updating case, the recursive weight update equation is defined: 10 

wt
i = w

t-1

i
p(yt|xt

i)p(xt
i |x

t-1
i )

q(xt
i|x

t-1
i ,yt)

                                                                                                              (36) 

The state estimated from the N particles is given by:  

xt = ∑ wt
iN

i=1 x
t

i
                                                                                                                         (37) 

Particles tend to degenerate (particle degeneration (Carpenter et al., 1999)), especially for higher dimensional 

problems, which means that the weights become nearly zero for most particles and only a few particles receive a 15 

weight significantly larger than zero. The effective sample size Neff is calculated after each updating step to 

detect particle degeneration:  

Neff = 
1

∑ (wt
i)

2N
i=1

                                                                                                                         (38) 

If the effective sample size is less than a pre-defined threshold (typically N/2), this is considered particle 

degeneration. 20 

To avoid a small effective sample size, resampling is necessary for the PF. Gordon et al. (1993) introduced the 

Sequential Importance Resampling (SIR). In SIR, N particles are drawn from the current particle set with 

probabilities proportional to their weights. The N samples receive now all a weight equal to 1/N. Other 

resampling algorithms have been suggested like Residual Resampling (RR) (Liu and Chen, 1998) which was 

used in our work. In RR, (a) N̂i=[Nwt
i], and [ ] is the integer operator; (b) a SIR procedure is performed to select 25 

the remaining Nj=N- ∑ N̂i
N
i=1  samples with new weights wt

j
=(Nwt

i-N̂i)/Nj. The variance of the particles is smaller 

than the variance given by SIR (Weerts and Serafy, 2006). The detailed schemes of SIR and RR are described in 

(Liu et al., 1998; Weerts and Serafy, 2006). When particles are resampled, the parameters generating the 

particles are also resampled by the vector containing the resample indices. Plaza et al. (2012) illustrated the 

importance of parameter resampling in PF by a series of data assimilation experiments.  30 

The disadvantage of resampling is that the diversity of particles is reduced as particles tend to cluster in state 

space which is often a poor representation of the posterior distribution. The ensemble inflation methods 

mentioned above could also be implemented to solve particle degeneration (Qin et al., 2009). In our work, the 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-42, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 23 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



9 

 

method described by Plaza et al. (2012) and Moradkhani et al. (2005b) was used, in which the resampled 

parameter values were perturbed by white Gaussian noise to increase the particle spread. Plaza et al. (2012) 

concluded that resampling of replicating particles with larger weights would negatively affect the assimilation 

performance, and that perturbation of resampled parameters would relieve this problem. The applied method can 

be summarized as follows: 5 

IF Neff < N/2 

 Residual Resampling step 

            Calculate the resampling index vector j 

              x̂t = xt(j) 

              p̂
t
 = p

t
(j) 

 Perturb the resampled parameters 

             p
t
i = p̂

t

i
 + εt

i               εt 
i ~ N(0, s

2σprior
2 ) 10 

 Assign weights 

            wt
i = 1/N 

END IF 

Where s is a small tuning parameter and σprior
2  is the prior variance for parameter p. s was 0.1 in our work.   

3.3 Markov Chain Monte Carlo PF (MCMCPF) 

To achieve a higher variability in particles and to avoid particle degeneration, Moradkhani et al. (2012) and 15 

Vrugt et al. (2013) used Markov Chain Monte Carlo methods (MCMC). In MCMC methods, after RR, it 

becomes necessary to add a move step, creating a proposal distribution. The proposal distribution allows for a 

relatively large move which probably jumps far away from the probability mass of the posterior distribution. In 

this work, the formulation by Vrugt et al. (2013) was used to generate proposal state particles and parameter sets.  

Details of the methodology can be found in Vrugt et al. (2013). 20 

The Metropolis acceptance ratio α is calculated to determine whether the proposed state-parameter combination 

is accepted. 
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where xi,t

pro
 is the ith proposed state sampled from the proposal state distribution at time step t, p

i,t

pro
 is the ith 

proposed parameter sampled from the proposal parameter distribution at time step t, and y
t
i represents the ith 25 

observation at time step t. The proposed state-parameter combination is accepted if (α > U(0,1)) where U(0,1) is 

an uniformly distributed random number. Through this acceptance/rejection step, the algorithm ensures 

variability of particles in the posterior density. After a single iteration, the algorithm moves to the next time step. 

More iterations will lead to better results, but increase the needed CPU-time because it resamples proposal 

particles and repeats model runs. The MCMC step can be summarized as follows: 30 

IF Neff < N/2 

Residual Resampling step 

            Calculate the resampling index vector j 
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            x̂t=xt(j) 

            p̂
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MCMC Resampling 

            Create proposal x
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pro
 based on xt-1 

            Create proposal p
t
pro based on p̂

t
 5 

            Simulate proposal xt

pro
 based on proposal x

t-1

pro
 and proposal p

t
pro using model 

            Calculate the Metropolis ratio α(xi,t

pro
, x̂t

i
)  

            Calculate the accept index vector j 

            x̂t(j) = xt

pro
(j)  if proposal xi,t

pro
 is accepted, x̂t

i
 will be replaced by proposal  xi,t

pro
 

            p̂
t

= p
t
pro(j)      if proposal p

i,t

pro
 is accepted, p̂

t

i
 will be replaced by proposal p

i,t

pro
 10 

Assign weights 

            wt
i=1/N 

END IF 

4. Case study 

4.1 Rollesbroich site 15 

The Rollesbroich site (50°37'27"N, 6°18'17"E) is a grassland site and a subcatchment of the TERENO Rur 

catchment in Germany (Bogena et al., 2010; Qu et al., 2014). It is located in the Eifel hills and the dominant soil 

texture is silty loam. It covers an area of 27 ha with an altitude ranging between 474 and 518m.a.s.l. The mean 

annual air temperature is 7.7 °C, the mean annual precipitation is 1033mm, and the mean slope is 1.63°. At the 

site an eddy covariance tower (50°37'19"N, 6°18'15"E, height 514.7m.a.s.l) and a soil moisture and soil 20 

temperature sensor network (with measurements at 5, 20 and 50cm depth) are installed, amongst others. Soil 

moisture time series at 41 locations are being recorded. Figure 1 shows the locations of the measurement 

devices. 

In this work, the Rollesbroich site is modelled as a single point and the data of the soil sensor network are 

averaged to calculate areal averages of soil moisture content at 5cm, 20cm and 50cm depth. The forcing data in 25 

this study (hourly air temperature, air pressure, relative humidity, wind speed, incoming shortwave and 

longwave radiation), were measured at the eddy covariance tower. Precipitation was measured by a tipping 

bucket located close to the eddy covariance station. Figure 2 shows the daily precipitation and daily air 

temperature for the years 2011 and 2012. Soil texture was determined for the area based on 273 soil samples, 

taken from three different depths, ranging between 5 and 11 cm, 11 and 35 cm, and 35 to 65 cm. The sample 30 

locations coincided with the location of the SoilNet sensors. The soil textural composition, organic carbon 

content, and bulk density were determined using standard laboratory procedures. Other soil hydraulic parameters 

were estimated from these data with help of pedotransfer functions. Finally, for each of the three depth ranges 

average values were calculated.  
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4.2 Experiment Setup  

VIC-3L and CLM were spun-up with measured meteorological data from January 1, 2011 to February 29, 2012 

using an hourly time step. The assimilation period was from March 1, 2012 to July 31, 2012. Daily soil moisture 

observations were assimilated in the assimilation period to update model states and possibly also parameters. 

The verification period was from August 1, 2012 to December 31, 2012. In this period, models were not 5 

informed by observations, but used the updated parameter values as input.  

Soil moisture contents measured at 5cm, 20cm and 50cm depth were assimilated jointly. The definition of the 

model layers in VIC-3L was in correspondence with these data, the three layers extended from 0cm to 10cm, 

10cm to 30cm and 30cm to 70cm. Parameters were also defined for the three layers. In CLM, the 10 predefined 

soil layers were involved in the hydrological calculations. Soil moisture content measurements at 5cm, 20cm and 10 

50cm corresponded to the third, fifth and the sixth model layer in CLM. The parameters of the other layers were 

updated with help of the calculated spatial covariances in case of EnKF. 

Figure 2 shows that the year 2012 had abundant rainfall, with some intensive precipitation events in the summer 

like the one on the 27th of July 2012 with 31mm precipitation in one hour. From our experience, if the rainfall 

intensity is too high, the parameter estimation is negatively affected. This is probably related to surface runoff 15 

which is not handled well by the model, and the reduced state-parameter correlation for very high soil moisture 

contents. Therefore, if the cumulative daily rainfall was more than 20mm no parameter updating was made for 

that day and the two next days. For those days, only states were updated. 

In order to evaluate joint state-parameter estimation algorithms for the two land surface models and the four 

different data assimilation algorithms, the following experiments were carried out (see also Table 2):  20 

(1) Open loop run. Model runs for an ensemble of stochastic realisations from March 1, 2012 to December 31, 

2012 without data assimilation.  

(2) State updating only. In this case, only soil moisture was updated (in the assimilation period) by the soil 

moisture observations.  

(3) Joint state-parameter updating. In the assimilation period, soil moisture and selected parameters were updated 25 

by assimilating soil moisture observations. The updated parameter values from the final time step of the 

assimilation period were used in the verification period. 

For each of these three groups, the following scenarios were studied:  

(a) Type of algorithm. RRPF, MCMCPF and joint state-parameter estimation with EnKF using a dual approach 

or a state augmentation approach were tested for (3). EnKF with state updating only was tested for (2). 30 

(b) Type of model. Both VIC-3L and CLM were studied for (1), (2) and (3). 

100 ensemble members or particles (hereinafter: ensemble members) were used in the data assimilation 

experiments. Precipitation was perturbed were perturbed by multiplicative error ~ N(1,0.1) to represent the 

uncertainty of measured precipitation at the site. Soil parameters were perturbed as in Table 1. The soil moisture 

observation error is assumed to be normally distributed with mean equal to 0 and standard deviation equal to 35 

0.02m3/m3, for both VIC-3L and CLM. The model error was set to zero assuming that uncertainty was captured 

by uncertain parameters and model forcings. Parameter inflation according to Whitaker and Hamill (2012) was 

applied (Eq. (33)) forcing the ensemble of parameters to have a spread equal to the prior ensemble standard 

deviations for the parameters.  
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4.3 Results 

Two criteria are used to evaluate the performance of different scenarios: the Nash-Sutcliffe model efficiency 

(NSE) coefficient and the Root Mean Square Error (RMSE):  

 NSE = 1 - 
∑ (θt

sim
- θt

obs
)
2

T
t=1

∑ (θt
obs - 

1

T
∑ θt

obsT
t=1 )

2
T
t=1

                                                                                                   (40) 

 RMSE = √
1

T
∑ (θt

sim
- θt

obs
)
2

T
t=1                                                                                                   (41)                                                                                                        5 

 where θt
sim

 is the ensemble mean soil moisture content at time step t, θt
obs

 the soil moisture observation at time 

step t and T is the number of time steps. The NSE and RMSE values were calculated only for soil moisture 

content as no reliable information was available on the true values for the soil hydraulic properties. These 

performance measures were evaluated separately for the verification and assimilation period. A NSE value equal 

to 1 and RMSE equal to 0 imply a perfect prediction.    10 

4.3a Results for VIC-3L 

Figure 3 shows the soil moisture time series for the three VIC-3L model layers during the data assimilation 

period. The figure compares time series for the four scenarios with parameter estimation. The soil moisture time 

series for the first model layer are characterized by sharper fluctuations related to rainfall. This is especially the 

case for summer and related to some intensive rainfall events combined with faster drying due to higher 15 

evapotranspiration. As expected, the second and third layer show a slower response to rainfall, with flatter soil 

moisture time series. Soil moisture content for the third layer shows a slow and steady increase. Data 

assimilation is able to adjust soil moisture values towards the observed ones. However, RRPF does not 

reproduce measured soil moisture content at 50cm depth well for the period from March to June. From July 

onwards simulated soil moisture content with RRPF is close to the observations again. As a consequence, the 20 

NSE value of RRPF for the third layer is below zero. Also MCMCPF shows a reduced performance for the third 

layer with a NSE equal to 0.1279, which is related to a dry bias. EnKF results in better simulation results for the 

third layer (both for state augmentation and dual estimation) compared to RRPF and MCMCPF.  

Figure 4 shows the NSE and RMSE values of soil moisture content for the assimilation period and all scenarios. 

The open loop deviates most from the measured values, but if states are updated RMSE values are reduced by 25 

68%, 82% and 95% for the three layers, compared to the open loop run. This means EnKF without parameter 

estimation works very well during the assimilation period even though only states are updated. The two EnKF-

scenarios show a similar performance during the assimilation period with similar NSE and RMSE values. 

RMSE-reductions compared to the open loop run are for the augmentation approach 42% for the first layer, and 

88% both for the second and third layer. The two particle filter algorithms (RRPF and MCMCPF) give for the 30 

first and second layer results comparable to the two EnKF-algorithms. Overall, during the assimilation period, 

EnKF without parameter estimation (noParamUpdate) outperforms DA with parameter estimation, and the 

EnKF-algorithms give better results than the PF-algorithms, related to the performance for the third model layer. 

MCMCPF gives better results than RRPF.  

Figure 5 shows the parameter evolution for the four parameter estimation scenarios during the assimilation (and 35 

parameter calibration) period. In general, parameters show similar tendencies during the calibration period for 
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these scenarios. The parameters estimated by MCMCPF show much larger temporal fluctuations than for the 

other three methods. This is inherent to the MCMCPF methodology. MCMC allows for relatively large moves 

with jumps large enough to cover the complete posterior distribution of states and parameters. Even although the 

soil moisture time series for the state augmentation and dual estimation method are very similar, the temporal 

evolution of their parameter values are different. Nevertheless, the updating of the AUG and DUAL parameters 5 

still follow the same general tendency. The temporal evolution of parameter values for the first layer shows more 

fluctuations than for the second and third layer. This is related to rainfall events as soil moisture content in the 

first layer is sensitive to rainfall, which affects also the parameter characterization. Subfigure (h) in Fig. 5 shows 

the maximum baseflow velocity Dm in the third layer, which is a key parameter to calculate the baseflow. The 

time series of Dm for the EnKF-algorithms show a fast decrease in the first month and a stable tendency 10 

afterwards, whereas the Dm time series for RRPF decreases continuously until the last month. This slower 

convergence might also explain the worse performance of RRPF for a substantial part of the assimilation period.  

Figure 6 shows the temporal evolution of the parameters log10Ks and β for the second layer and the four data 

assimilation algorithms. The mean of the ensemble members tends to be stable for the four data assimilation 

algorithms. A too narrow spread of ensemble members would lead to filter divergence. For the state 15 

augmentation (AUG) and dual estimation (DUAL), the spread of the ensemble members is kept large enough 

during the whole assimilation period as the ensemble inflation method helped to keep adequate ensemble spread. 

RRPF and MCMCPF also have enough ensemble spread because of parameter perturbation and MCMCPF 

resampling. Parameters change largely from late April onwards, which is related to intensive precipitation events 

from late April onwards (see also Fig. 2a).  20 

Figure 7 displays soil moisture time series for the verification period, for all three model layers and for all four 

data assimilation algorithms. Soil moisture content shows stronger fluctuations over the first three months 

(August, September, and October) related to intensive rainfall events and the higher evapotranspiration during 

these months. The performance of the data assimilation algorithms shows differences over this period. In the first 

three months, RRPF shows the worst and DUAL the best performance in terms of reproducing the measurement 25 

data. In the last months of the verification period, the opposite behavior can be observed. All the four data 

assimilation algorithms do not perform well for the third model layer. This might be related to the fact that 

aquifers are not included in VIC and because of the simple baseflow parameterization.  

The NSE and RMSE values for soil moisture characterization in the verification period and the three soil layers 

are plotted in Fig. 8. Generally, the overall RMSE values for the verification period are high compared to the 30 

assimilation period. In the verification period, the RMSE values of the scenario noParamUpdate are close to the 

RMSE values of the open loop run. If soil parameters were updated during the assimilation period, the RMSE 

values for soil moisture characterization were reduced. More specifically, state augmentation (AUG) shows a 

RMSE improvement of 68% and 36% for the second and third model layer (compared with the open loop run), a 

result very similar to the dual estimation with 67% respectively 36% RMSE-reduction. Results are also not very 35 

different for the two particle filter algorithms with 67% and 18% RMSE-reduction for MCMCPF, and 69% and 

39% RMSE-reduction for RRPF. The NSE values for the third model layer are negative, indicating the bad 

performance of the algorithms for this layer. 
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4.3b Results for CLM 

Figure 9 shows the CLM soil moisture time series for the assimilation period as obtained by application of the 

four different data assimilation algorithms. The performance of the data assimilation algorithms varies more than 

for the VIC-simulations. State augmentation (AUG) and dual estimation (DUAL) perform slightly better than 

RRPF and MCMCPF for all the three layers. The soil moisture fluctuations at 5cm depth could not always be 5 

reproduced well by data assimilation. RRPF shows the worst performance, especially at 50cm depth. Figure 10 

shows the NSE and RMSE values for soil moisture characterization during the assimilation period for all 

scenarios. In general, the performance is very good if only states are updated. State augmentation (AUG) and 

dual estimation (DUAL) show a similar performance with a RMSE-reduction (compared to the open loop run) of 

63% (66%) for layer 1, 80% (82%) for layer 2 and 86% (87%) for layer 3 for the augmentation (dual estimation) 10 

method. RMSE-reductions are smaller for MCMCPF (between 47% and 75%) and especially for RRPF 

(between 30% and 60%). 

Figure 11 displays the ensemble of the temporal evolutions of log10ks and the soil hydraulic parameter B at 

50cm depth during the assimilation (calibration) period. Overall, changes in parameter values are small and 

towards the end of the calibration period the behavior has become quite stable. The figure shows that the 15 

inflation method is able to keep the ensemble spread except for RRPF with an ensemble spread which is clearly 

too low. The poorer performance of RRPF compared to the other data assimilation algorithms is likely related to 

the reduced ensemble spread. 

Figure 12 shows time series of CLM-calculated soil moisture content for the three layers for the verification 

period. The temporal evolution of soil moisture content at shallow depths (5cm and 20cm) for state augmentation 20 

(AUG), dual estimation (DUAL) and MCMCPF is characterized by a very similar consistency with the 

observations. At 50cm depth the differences between the data assimilation algorithms are larger. Figure 13 

shows the NSE and RMSE values for soil moisture content characterization in the verification period for the 

different data assimilation scenarios. The RMSE values for the verification period are higher than for the 

assimilation period. If parameters were not updated (scenario noParamUpdate) in the assimilation period, soil 25 

moisture characterization is close to the open loop run, and even slightly worse than the open loop run at 5cm 

depth. State augmentation (AUG), dual estimation and MCMCPF show all very similar RMSE-reductions 

(compared to the open loop run) of 18-23% for 5cm depth, 26%-30% for 20cm depth and 66%-70% for 50cm 

depth. The performance of RRPF is slightly worse for the second and third layer, compared to the other data 

assimilation algorithms. 30 

5. Discussion 

This study evaluated four sequential data assimilation algorithms in combination with two land surface models 

for joint state-parameter estimation with measured data at the Rollesbroich site in western Germany. The 

important novel aspect of this work is that this kind of evaluation and comparison study is done for real-world 

data.  35 

It was shown that soil properties and model parameters (i.e., hydraulic conductivity, soil texture, and VIC model 

parameter Dm) estimated with variants of EnKF or PF, resulted in improved model predictions during a 

verification period (without data assimilation) where the estimated parameters were used as model input. The 
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improvement (compared to open loop runs) was considerable, especially for deeper soil layers, the land surface 

model CLM and the EnKF-based algorithms. However, this improvement does not necessarily imply that the 

estimated parameters are also closer to the real-world values. Updated parameters might compensate for model 

structural errors and biases. If model structural errors and biases have a strong correlation over time (i.e., are 

very persistent), estimated parameters which compensate for model bias still give an improved model prediction 5 

in the verification period. Whereas in synthetic studies it could be confirmed that parameter estimates indeed 

approach the true parameter values, this cannot be confirmed for the real-world study.  

The performance of the four data assimilation algorithms does not differ very much in this study. However, the 

EnKF-based algorithms slightly outperform the particle filter based data assimilation algorithms if 100 ensemble 

members/particles are used. The difference between the data assimilation algorithms is larger for CLM, which is 10 

probably related to the fact that indirectly more parameters are affected by the calibration (by the pedotransfer 

functions) than for VIC. It can be expected that in case a large number of unknown parameters has to be 

estimated it will be more difficult for PF to find those parameters than it is for EnKF. Nevertheless, the small 

difference in performance between EnKF and PF based algorithms indicates that PF is also an efficient data 

assimilation algorithm for problems of this size. The results of this study are obtained for the point scale, a 15 

relatively small ensemble size of 100 (which is nevertheless larger than typically used for data assimilation in 

combination with land surface models) and for relatively short parameter estimation and verification periods. 

Given the CPU-intensity of the calculations a larger comparison was beyond the scope of this work.  

DeChant and Moradkhani (2012) used a range of performance measures, like Nash-Sutcliffe efficiency (NSE), 

Reliability (α), and Normalized root-mean-square error ratio (NRR), to evaluate EnKF and PF in state-parameter 20 

estimation. They also concluded that EnKF and PF showed similar performance. EnKF was more effective in the 

verification period but its ensemble members had a too low spread. The PF characterized more accurately the 

tails of the posterior distribution. Dumedah and Coulibaly (2013) found that PF performed better than EnKF 

when forecasting for longer lead time periods. They observed that model simulations were stronger adjusted 

towards the observations in case EnKF was used for data assimilation, whereas for PF this was less the case. In 25 

our study, an inflation algorithm was applied to the ensemble of parameter values to ameliorate filter divergence, 

which might have helped EnKF to better characterize the posterior distribution of parameters and states. The 

disadvantage of this – commonly applied – procedure is that the uncertainty of the estimated parameters is not 

characterized well, as the parameter uncertainty is kept at the same level as the prior uncertainty. If possible, it is 

therefore better to use very large ensemble sizes to avoid filter inbreeding and have also a good uncertainty 30 

characterization.  

It is not surprising that the EnKF is more efficient and effective than the PF. Both approaches use an ensemble of 

realizations to approximate the forecast distribution, yet they differ fundamentally in their analysis step. The 

EnKF updates the simulated state variables of each ensemble member using the difference of their forecasted 

output variable(s) (could be one or more of the simulated states) and corresponding observed value(s). This 35 

difference is then transformed into the state space using the measurement operator and determines the analysis 

values of the state variables. The measured values of the output variable(s) are thus used directly in the analysis 

step. In the PF on the contrary, not the measured values are used to determine the state update in the analysis step 

but rather the likelihood of each trajectory. This likelihood measures in probabilistic terms the agreement 

between the forecasted output variable(s) and their measured values, yet constitutes only a proxy of their 40 
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distance. The value of the likelihood does generally not say anything about how close the forecasted variables 

are to their measured counterparts. What is more, the value of the likelihood is the same for a given distance of 

the forecasted variables to their measured values, whether they are overestimating or underestimating the data. 

This makes it much harder to determine an adequate size and direction (up or down) of the state update with 

MCMC resampling. This explains why PF-MCMC methods cannot be as efficient and effective as EnKF-based 5 

data assimilation schemes. Multiple MCMC resampling steps can increase significantly the particle ensemble by 

allowing each particle trajectory to improve its likelihood. Yet, this deteriorates significantly the efficiency of 

implementation as each new particle that is generated during resampling requires a separate model evaluation to 

determine the likelihood of the proposed trajectory. One can improve significantly the efficiency of PF-based 

data assimilation schemes if one adopts the update rule of the EnKF during particle resampling with MCMC 10 

[Vrugt et al., 2013]. 

Differences between land surface models were larger than differences between data assimilation algorithms in 

this study. CLM performed better than VIC, especially for the deepest model layer. Although it is important not 

to over interpret this result, as this is only a study for one site, the worse performance of VIC could be related to 

the missing groundwater/subsurface component in this model. In CLM, the interaction between the unsaturated 15 

zone and groundwater is included. The change of water table depth is calculated and included as boundary 

condition for solving flow in the unsaturated zone.  

6. Conclusion 

Different sequential data assimilation algorithms were tested in combination with the Variable Infiltration 

Capacity Model (VIC) and the Community Land Model (CLM). In total four sequential data assimilation 20 

algorithms were evaluated for joint state-parameter estimation: two variants of the Ensemble Kalman Filter 

(EnKF) (augmentation method and dual estimation), and two variants of the Particle Filter (Residual Resampling 

Particle Filter (RRPF) and Markov Chain Monte Carlo Particle Filter (MCMCPF)). The performance of the four 

sequential data assimilation methods in combination with two land surface models was evaluated for the 

TERENO-observation site Rollesbroich in the western part of Germany. The highly equipped site allows to gain 25 

more insight in the performance of data assimilation algorithms for joint state-parameter estimation for land 

surface models. Measured soil moisture data at 5cm, 20cm and 50cm depth from different wireless sensor 

network were averaged over the area and used for assimilation. The assimilation period (including parameter 

estimation) was from March 2012- July 2012. The parameter estimates for the four data assimilation algorithms 

were evaluated for the period of August 2012- December 2012. The performance of the four different joint state 30 

and parameter estimation methods in the verification period was not very different, with a slightly better 

performance of the augmentation method and dual estimation method and a slightly worse performance of RRPF 

and MCMCPF. The difference in performance between VIC and CLM was larger than the difference in 

performance between the four data assimilation methods. CLM performed better than VIC especially for the 

deep soil layers. This is probably related to the poor representation of groundwater subsurface flow in VIC. The 35 

control of groundwater as lower boundary condition and its impact on the vadose zone in the form of moisture 

supply is neglected in VIC. It results here in an underestimation of soil moisture content for the deeper soil layer.  

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-42, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 23 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



17 

 

Appendix A: Parametrization of the VIC Model 

The water balance for a given time step is given by: 

∂S

∂t
 = P - E- Q                                                                                                                          (A1) 

where 
∂S

∂t
 [LT-1] is the change of water storage, P [LT-1] is precipitation, E [LT-1] is evapotranspiration and Q 

[LT-1] is runoff. E is composed of soil evaporation, transpiration by vegetation and evaporation from intercepted 5 

water. Bare soil evaporation is calculated by the equation of Francini and Pacciani (Franchini and Pacciani, 

1991). Evaporation from intercepted water is calculated based on canopy potential evapotranspiration which is 

calculated by the Penman-Monteith equation (Shuttleworth, 2007). Maximum amount of water intercepted by 

the canopy is 0.2 times LAI (Dickinson, 1984). Vegetation transpiration is estimated using Blondin (1991) and 

Ducoudre et al. (1993), where canopy resistance is calculated by minimum canopy resistance, LAI, 10 

photosynthetically active radiation flux factor, temperature factor, vapor pressure deficit factor, and soil moisture 

factor. The four factors are available through Wigmosta et al. (1994). Q includes direct runoff Qd [LT-1] and 

baseflow Qb [LT-1]. The VIC model assumes there is no lateral flow in the top two soil layers. Therefore the 

movement of moisture can be characterized by (Liang et al., 1996): 

∂θi

∂t
zi = P - Q

d
 - Q

i,i+1
 - E              (i=1, 2)                                                                               (A2) 15 

∂θ3

∂t
z3 = Q

2,3
 - E - Q

b
                                                                                                               (A3)  

where θ [L3L-3] is volumetric soil moisture content, zi [L] is soil depth for layer i (i =1,2), Qi,i+1 [LT-1] is the 

vertical drainage between layer i and i+1, Qd [LT-1] is calculated for layer 1 and layer 2. Evapotranspiration E 

[LT-1] can occur from soil moisture stored in the three layers. In case of bare soil evaporation only, E is equal to 

zero in Eq. (A3) because there is no evaporation from layer 3. If plant roots are present in layer 3, E also takes 20 

place from layer 3. Base flow Qb [LT-1] is only generated from the third layer.  

Assuming that the drainage is driven by gravity, the Brooks and Corey (1964) relation is used to estimate 

unsaturated hydraulic conductivity, and the vertical drainage between layer i and i+1 is expressed as (Liang et 

al., 1994): 

Q
i,i+1

 = ks,i (
θi-θr,i

θi
max

-θr,i
)
βi

            (i=1,2)                                                                                    (A4)  25 

where ks,i [LT-1] is the saturated hydraulic conductivity for layer i, θr,i [L3L-3] is the residual soil moisture 

content, exponent β
i
 [-] is a model parameter and θi

max
 [L3L-3] is the maximum soil moisture content of layer i: 

θi
max

 = ϕi                               (i=1,2)                                                                                     (A5) 

where  ϕi [-] is the porosity of the soil layer i. Exponent β
i
 [-] is a function of the pore size distribution index Bp 

[-]: 30 

β
i
 = 

2

Bp
 + 3                                                                                                                             (A6) 

Qd is calculated for layer 1 and layer 2 as follows (Liang et al., 1996): 
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Q
d
 = {

P - (θ1
max

-z1θ
1
)-(θ2

max
-z2θ

2
)+(θ1

max
+θ2

max) (1-
I+P

im
)

1+b

,          P+I  ≤ Im

P - (θ1
max

-z1 θ
1
)-(θ2

max
-z2 θ

2
),                                              P+I  >Im

                       (A7)   

where the parameter b [-] is the infiltration shape parameter which is a measure of the spatial variability of the 

infiltration capacity.  Because of the lack of hydrologic information at site, it is usually determined by 

calibration. The reason for calculating Qd for the entire upper soil (layer 1 and layer 2) is that the top layer has a 

very small water holding capacity (i.e. z1ϕ1). The variable filtration capacity I [L] of the upper soil is a function 5 

of the maximum filtration capacity Im [L] [Zhao, 1992]: 

I = Im(1 - (1 - A)
1

b) with  Im = (1 + b)(θ1
max

 + θ2
max

)                                                                 (A8) 

where A [-] is the fraction of area where infiltration capacity is less than Im:  

A = 1.0 - (1.0 - 
z1θ1 + z2θ2

θ1
max

 + θ2
max )

b

1 + b
                                                                                                 (A9) 

Qb  is formulated according the Arno model equation (Franchini and Pacciani, 1991): 10 

 Q
b
 = {

 
DS Dm

WSθ3
max θ3 z3,                                                    0 ≤ θ3z3 ≤ WSθ3

max

DSDm

WSθ3
max  θ3z3 + (Dm - 

DSDm

WS
) (

θ3z3 - WSθ3
max

θ3
max - WSθ3

max)
2

,    θ3z3 > WSθ3
max

  

                                 (A10) 

where Dm  [LT-1] is the maximum baseflow velocity, DS  [-] is the fraction of Dm  where nonlinear baseflow 

begins and WS [-] is the fraction of maximum soil moisture (θ3
max

). In VIC-3L, there is no distinction between 

unsaturated and saturated zones in the lower layer. In other words, the unsaturated and saturated zones are 

treated in a lumped sense. Therefore Qb includes both drainage from the unsaturated part and baseflow from 15 

groundwater (Liang et al., 1996; Liang et al., 2003). Liang et al. (2003) developed a new parameterization into 

the VIC-3L model (called VIC-ground) to represent the interaction between surface water and groundwater. 

Their results showed that soil moisture content for the lower VIC-ground layer was in general higher than for 

VIC-3L.  

Appendix B: Parametrization of the CLM Model 20 

The hydraulic conductivity ki [LT-1], soil matric potential ψi [L] and soil thermal conductivity λi [WL-1K-1] 

for layer i are determined by sand and clay content (Clapp and Hornberger, 1978; Cosby et al., 1984) and 

organic matter density (Lawrence and Slater, 2008). The calculation of the hydraulic conductivity ki  at the 

interface of two adjacent layers i and i + 1 is described in detail in (Oleson et al., 2013; Han et al., 2014).  

The soil matric potential ψi [L] is given by:  25 

ψ
i
 = ψ

sat,i
(

θi

θsat,i
)
-Bi

                                                                                                                   (B1) 

where 

ψ
sat,i

 =  -10 ∙ 101.88-0.0131fs,i(1 - fom,i) - 10.3fom,i                                                                    (B2) 

Bi = (1 - fom,i)(2.91 + 0.159fc,i) + 2.7fom,i                                                                           (B3) 
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θsat,i = (1 - fom,i)θsat,min,i + 0.9fom,i                                                                                        (B4) 

θsat,min,i = 0.489 - 0.00126(fs,i)                                                                                              (B5)  

where θi [L3L-3] is soil moisture content for layer i, θsat,i [L3L-3] is saturated soil moisture content, ψ
sat,i

 [L] is 

the saturated soil matric potential, Bi [-] is the Clapp-Hornberger exponent, fs,i [-] is sand fraction, fc,i [-] is clay 

fraction and fom,i [-] is organic matter fraction.  5 

The water balance is given by Eq. (A1). ∆S includes the changes in canopy water, surface water, snow water, 

soil water, soil ice and water stored in the unconfined aquifer. In addition to surface and subsurface runoff, Q 

also includes runoff from glaciers, wetlands and lakes. Latent heat fluxes E [ML-2T-1] include ground 

evaporation, canopy evaporation and transpiration. The basic processes can be described by the fundamental 

expression (Schwinger et al., 2010; Oleson et al., 2013): 10 

E = 
ρ

r
(q-q

a
)                                                                                                                           (B6)  

Where ρ is the density of air [ML-3], r is aerodynamic resistance [TL-1], q [MM-1] is the specific humidity of 

soil pore space (or canopy space) or saturated specific humidity of snow or surface water and qa [MM-1] is 

specific humidity at the atmospheric level when ground evaporation is calculated, or the saturated specific 

humidity within the canopy when canopy evapotranspiration is calculated. r, q and qa are based on Monin-15 

Obukhov similarity theory (Schwinger et al., 2010; Oleson et al., 2013). 

The one-dimensional vertical flow in the unsaturated zone is influenced by infiltration, surface and subsurface 

runoff, canopy transpiration, and interactions with groundwater. A modified Richards equation is used to predict 

vertical soil water flow: 

∂θi

∂t
 = 

∂

∂z
[ki(

∂(ψi - (ψsat,i +z∇ - zi))

∂z
)]  - E                                                                                         (B7)  20 

where z∇  [L] is groundwater table depth, and E [LT-1] is evapotranspiration loss. This equation has different 

boundary conditions depending on the presence of a water table in the soil column.  

In CLM, water table depth z∇  is calculated according to Niu (Niu et al., 2007). An unconfined aquifer is assumed 

to lie below the soil column. If the water table is within the soil column, water storage in the unconfined aquifer 

is assumed to be constant as the soil column is saturated with water below the water table and a zero-flux bottom 25 

boundary condition is applied. The recharge to the unconfined aquifer is calculated by: 

q
recharge

 = -kwt

(-ψwt)

(z∇  - zwt)
                                                                                                              (B8)  

where kwt [LT-1] is the hydraulic conductivity of the layer containing the groundwater table, ψwt [L] the soil 

matric potential of that layer, zwt [L] the depth of that layer and z∇  [L] the water table depth. Drainage q
drainage

 

[ML-2T-1] is calculated by a simple TOPMODEL-based (SIMTOP) scheme (Niu et al., 2005) 30 

q
drainage

 = 10 sin (ε)exp (-2.5z∇ )                                                                                              (B9)  

where ε [Rad] is the mean topographic slope in the grid cell. The change in the water table depth is then given 

by:  

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-42, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 23 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



20 

 

 ∆z∇ = 
∆W

Sy
  with ∆W = (q

recharge
 - q

drainage
)∆t                                                                         (B10) 

where Sy [-] is the specific yield depending on the soil properties. 
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Table 1 summarizes soil parameters chosen to be updated during the assimilation period for the VIC model and 

CLM (N is normal distribution and U is uniform distribution). 

Models Variables Description Unit Ranges 
Magnitude of 

Perturbation 

VIC 

log10ks Saturated hydrologic conductivity m/s [-7, -3] +N(0, 1) 

β 
Exponent of the Brooks-Corey 

drainage equation 
- [8, 30] +U(-5, 5) 

b Infiltration shape parameter - [0.001, 0.8] +U(-0.1, 0.1) 

Dm Maximum velocity of baseflow mm/day (0, 30] +U(-10, 10) 

CLM 

 Clay fraction percentage [1, 100] +U(-10, 10) 

 Sand fraction percentage [1, 100] +U(-10, 10) 

 Organic matter density kg/m
3
 [1, 130] +U(-15, 15) 
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Table 2 summarizes the scenarios used for CLM and VIC-3L and the introduced abbreviations will be used in 

tables and figures.  

 scenario description Abbreviation 

 model open loop Openloop 

 EnKF with updating states only noParamUpdate 

 EnKF using the augmentation approach AUG 

 EnKF using the dual estimation approach DUAL 

 RRPF with parameter perturbation PF 

 MCMCPF MCMC 
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Figure 1 Overview of measurement devices in the Rollesbroich catchment. The blue dots are soil sample 

locations, red dots are soil network locations (soil moisture content and soil temperature are measured here), and 

the blue triangular indicates the eddy covariance tower. The Figure is taken from Qu et al. (2014). 5 

  

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-42, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 23 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



28 

 

 

 

Fig. 2 (a) daily precipitation from March 1, 2012 to July 31, 2012 (parameter estimation period), week 1 is 01-

03-2012 and week 22 coincides with 26-07-2012, (b) daily precipitation for the years 2011 and 2012, and (c) 

daily mean air temperature for the years 2011 and 2012, all measured at the Rollesbroich site. 5 
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Figure 3 Time series of soil moisture content  for different assimilation scenarios during the assimilation period 

(March-July 2012) for the VIC-3L model: (a) 5 cm depth, (b) 20 cm depth and (c) 50 cm depth. Week 1 starts at 

01-03-2012 and week 22 at 26-07-2012. 5 
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Figure 4 NSE and RMSE values for soil moisture content characterization for different scenarios in the 

assimilation period with the VIC-3L model: (a) NSE values for soil moisture content at 5cm, (b) NSE values at 

20cm, (c) NSE value at 50cm, (d) RMSE values at 5cm, (e) RMSE values at 20cm, and (f) RMSE values at 

50cm. 5 
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Figure 5 Temporal evolution of parameter values in the parameter estimation period (March 2012-July 2012), for 

the four data assimilation scenarios and the model VIC-3L. (a) Saturated hydraulic conductivity log10ks (m/s) at 

5cm depth, (b) 20cm depth and (c) 50cm depth, (d) model parameter b, (e) model parameter β at 5cm depth, (f) 5 

20cm depth and (g) 50cm depth, and (h) maximum velocity of baseflow Dm (mm/day). 
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Figure 6 Temporal evolution of parameter values for 100 ensemble members in the parameter estimation period, 

for the four data assimilation scenarios and the model VIC-3L and the second model layer. Saturated hydraulic 

conductivity log10ks (m/s) at 20cm depth is displayed for the four methods: (a) MCMC, (c) PF, (e) AUG, and (g) 5 

DUAL. Model parameter β at 20cm depth for the four methods: (b) MCMC, (d) PF, (f) AUG and (h) DUAL.  
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Figure 7 Time series of soil moisture content  for different assimilation scenarios during the verification period 

and for the VIC-3L model: (a) 5 cm depth, (b) 20 cm depth and (c) 50 cm depth. Week 23 starts with 01-08-2012 

and week 44 with 26-12-2012. 5 
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Figure 8 NSE and RMSE values for soil moisture content characterization in the verification period with the 

VIC-3L model: (a) NSE values for soil moisture content at 5cm, (b) NSE values at 20cm, (c) NSE values at 

50cm, (d) RMSE values at 5cm, (e) RMSE values at 20cm, and (f) RMSE values at 50cm.  

  5 
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Figure 9 Time series of soil moisture content for different data assimilation scenarios during the assimilation 

period and for the CLM model: (a) 5 cm depth, (b) 20 cm depth and (c) 50 cm depth.  Week 1 starts with 01-03-5 

2012 and week 22 with 26-07-2012. 
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Figure 10 NSE and RMSE values for soil moisture content characterization in the assimilation period with the 

CLM model: (a) NSE values for soil moisture content at 5cm, (b) NSE values at 20cm, (c) NSE values at 50cm, 

(d) RMSE values at 5cm, (e) RMSE values at 20cm, and (f) RMSE values at 50cm. 

  5 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-42, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 23 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



37 

 

 

 

Figure 11 Temporal evolution of parameter values in the assimilation and parameter estimation period, for the 

four data assimilation scenarios and the CLM-model. Saturated hydraulic conductivity log10Ks (m/s) at 50cm 

depth is displayed for the four methods: (a) MCMC, (c) PF, (e) AUG, and (g) DUAL. Soil hydraulic parameter B 5 

at 50cm depth for the four methods: (b) MCMC, (d) PF, (f) AUG and (h) DUAL. Displayed are temporal 

evolutions for 100 ensemble members. 
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Figure 12 Time series of soil moisture content for different assimilation scenarios with CLM during the 

verification period: (a) 5 cm depth, (b) 20 cm depth and (c) 50 cm depth. Week 23 starts with 01-08-2012 and 

week 44 with 26-12-2012. 5 
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Figure 13 NSE and RMSE values for soil moisture content characterization in the verification period with the 

CLM model: (a) NSE values for soil moisture content at 5cm, (b) NSE values at 20cm, (c) NSE values at 50cm, 

(d) RMSE values at 5cm, (e) RMSE values at 20cm, and (f) RMSE values at 50cm. 5 
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